

CS103
WINTER 2025

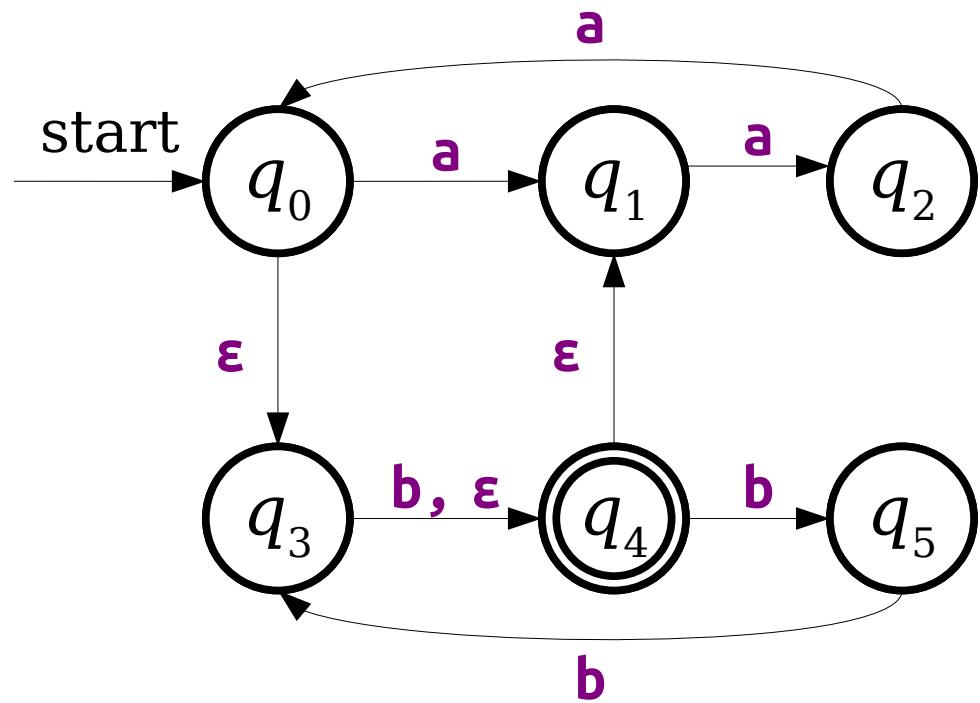
Lecture 16: Finite Automata

Part 3 of 3

Recap from Last Time

NFAs

- An **NFA** is a
 - **N**ondeterministic
 - **F**inite
 - **A**utomaton
- NFAs have no restrictions on how many transitions are allowed per state.
- They can also use ϵ -transitions.
- An NFA accepts a string w if there is some sequence of choices that leads to an accepting state.



Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- The NFA accepts if *any* of the states that are active at the end are accepting states. It rejects otherwise.

New Stuff!

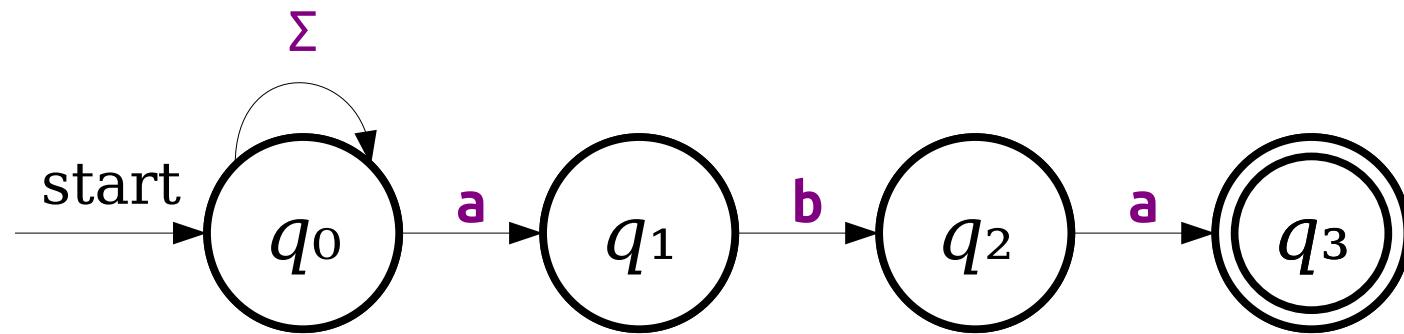
Just how powerful *are* NFAs?

NFAs and DFAs

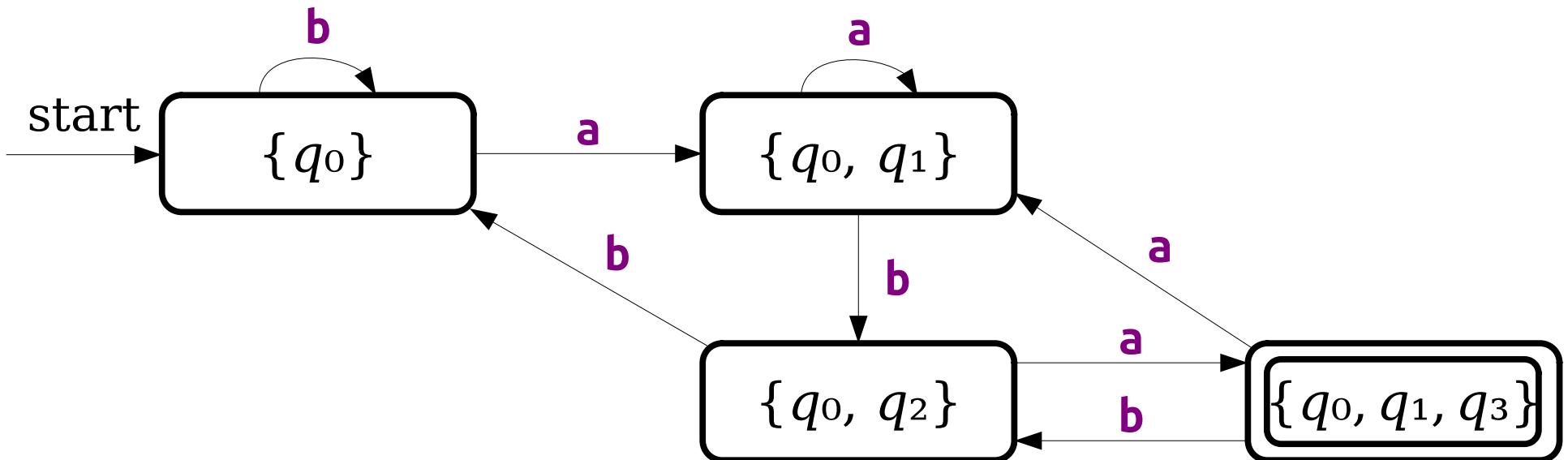
- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already *is* an NFA!
- **Question:** Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is **yes!**

Thought Experiment:

How would you simulate an NFA in software?



	a	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$^*\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$



The Subset Construction

- This procedure for turning an NFA for a language L into a DFA for a language L is called the ***subset construction***.
 - It's sometimes called the ***powerset construction***; it's different names for the same thing!
- Intuitively:
 - Each state in the DFA corresponds to a set of states from the NFA.
 - Each transition in the DFA corresponds to what transitions would be taken in the NFA when using the massive parallel intuition.
 - The accepting states in the DFA correspond to which sets of states would be considered accepting in the NFA when using the massive parallel intuition.
- There's an online ***Guide to the Subset Construction*** with a more elaborate example involving ϵ -transitions and cases where the NFA dies; check that for more details.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- ***Useful fact:*** $|\wp(S)| = 2^{|S|}$ for any finite set S .
- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- ***Question to ponder:*** Can you find a family of languages that have NFAs of size n , but no DFAs of size less than 2^n ?

Regular Languages

- A language L is called ***regular*** when there's a DFA D that recognizes L (that is, $\mathcal{L}(D) = L$).
- ***Theorem:*** A language L is regular if and only if there's an NFA N that recognizes it (that is, $\mathcal{L}(N) = L$).
- This fact makes it possible to explore regular languages by considering either DFAs or NFAs.

Time-Out for Announcements!

Please see Sean's post on Ed
for today's announcements.

Back to CS103!

Motivating Example: ***Numbers***

Numbers

- Numbers can be written in many ways:

2718

2,718

2.718×10^3

MMDCCXVIII

二千七百一十八

ב'תשי"ח

፲፭፻፭

UQFL

etc.

- How would we design a DFA or NFA that checks if a particular string is a number in some numeral system?

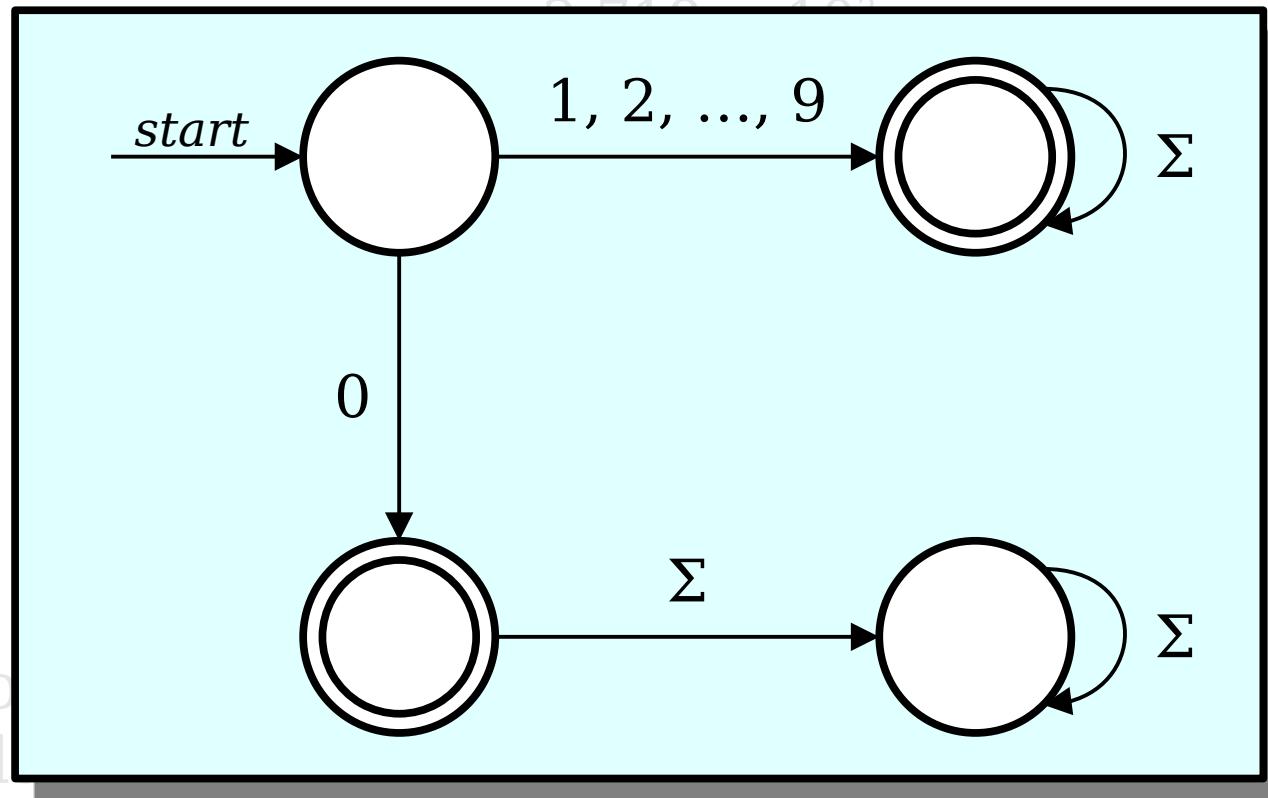
Numbers

- Numbers can be written in many ways:

2718

2,718

2.718 · 10³

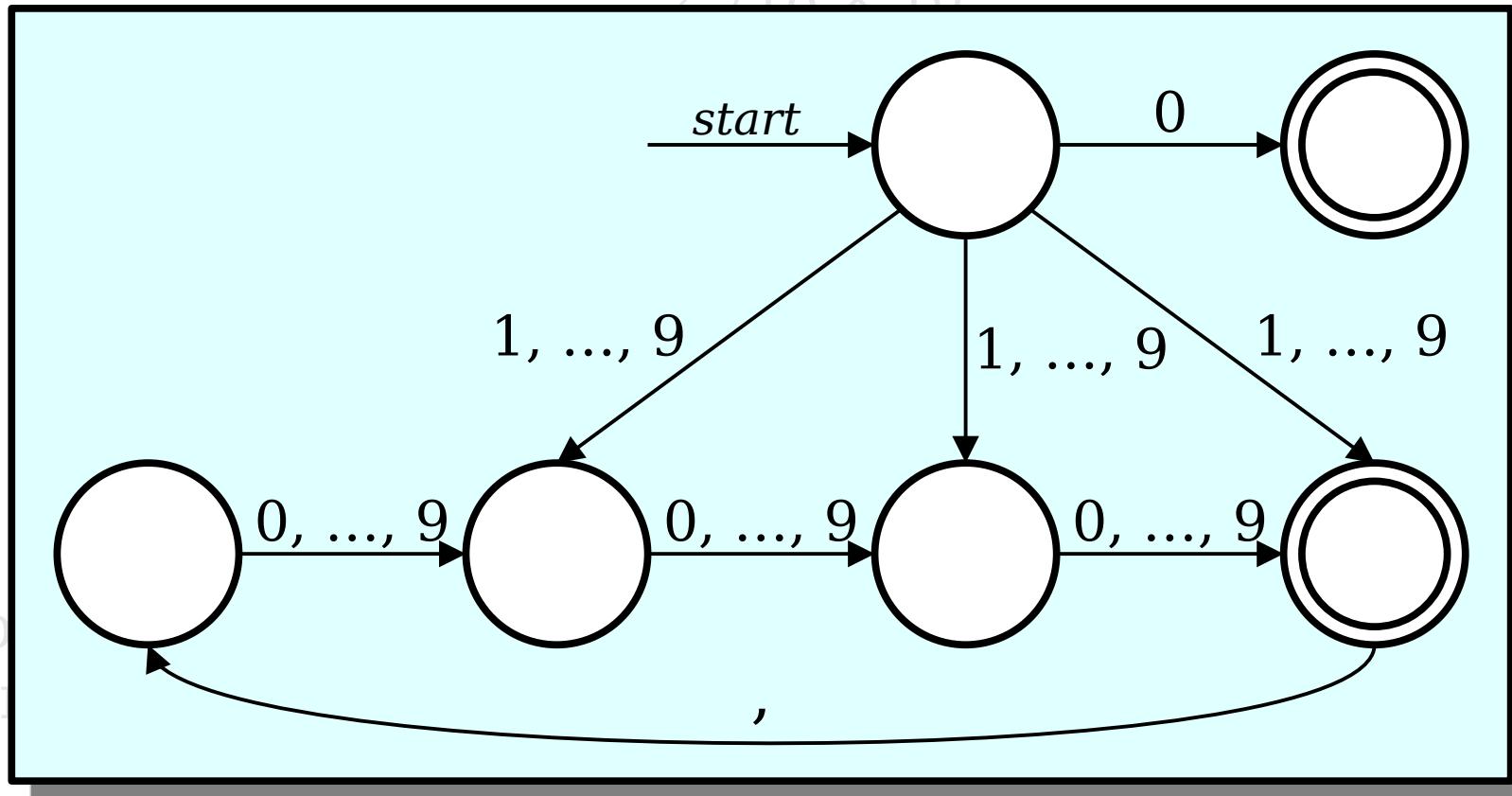


- How would you calculate the value of a number if a particular state represents a digit in a system?

Numbers

2,718

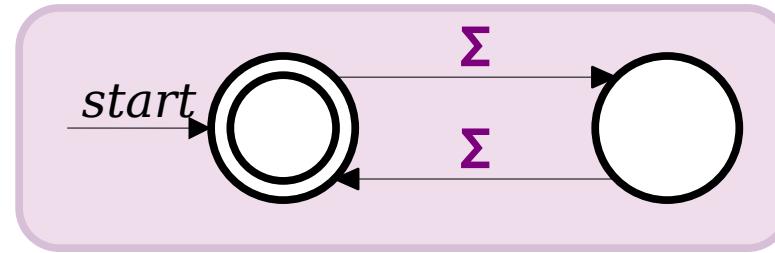
2718×10^3



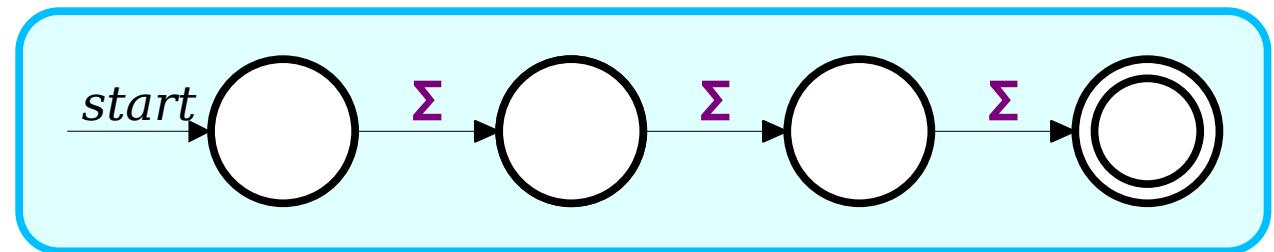
Practical Question: If we can build a bunch of finite automata that all recognize certain patterns, can we build a single finite automaton that recognizes all of those patterns?

Closure Under Union

- If L_1 and L_2 are languages over the alphabet Σ , the language $\textcolor{blue}{L_1 \cup L_2}$ is the language of all strings in at least one of the two languages.
- Intuitively, if L_1 and L_2 correspond to languages of strings with one of two different patterns, then $L_1 \cup L_2$ is the language of strings with at least one of those patterns.
- **Theorem:** If L_1 and L_2 are regular, so is $L_1 \cup L_2$.



DFA for L_1

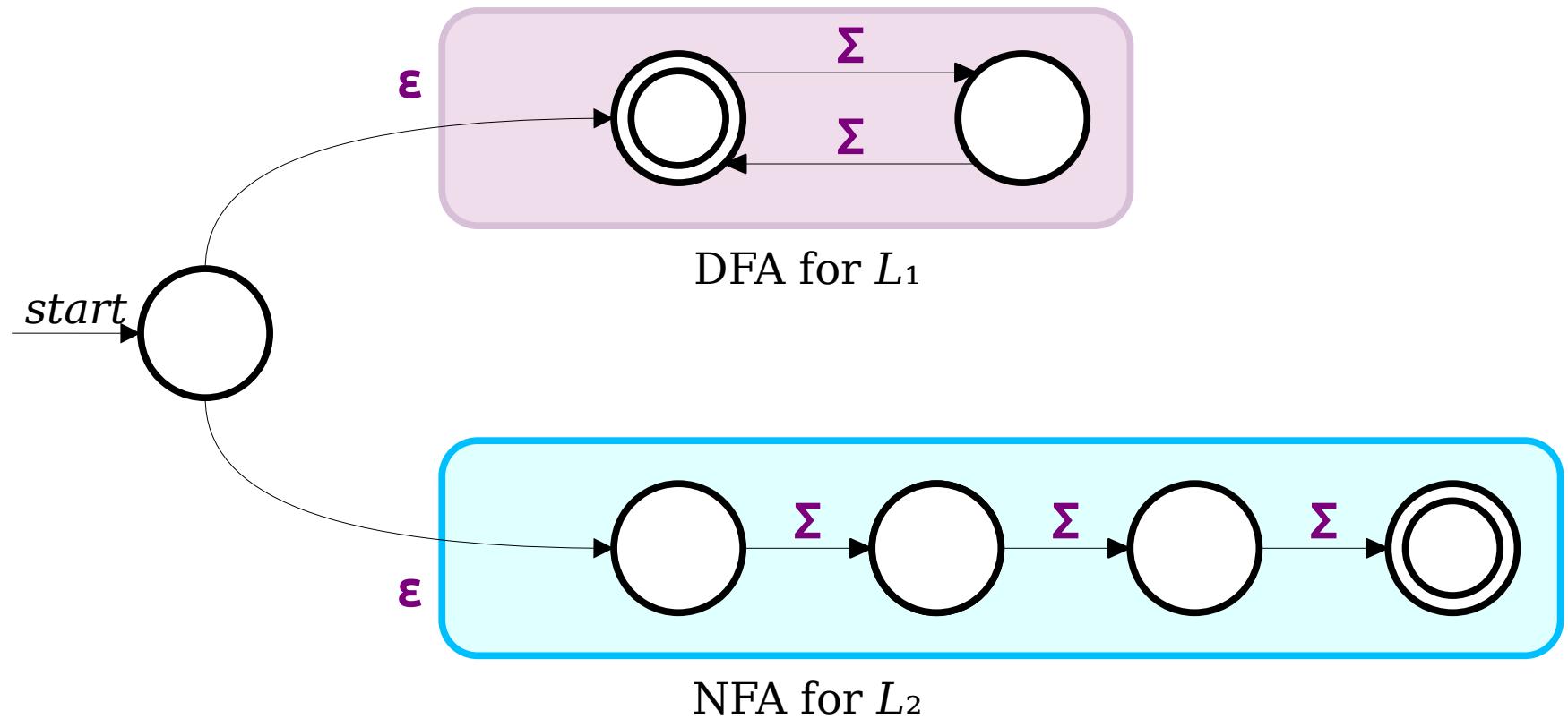


NFA for L_2

$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$$

$$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$$

Construct an NFA for $L_1 \cup L_2$.



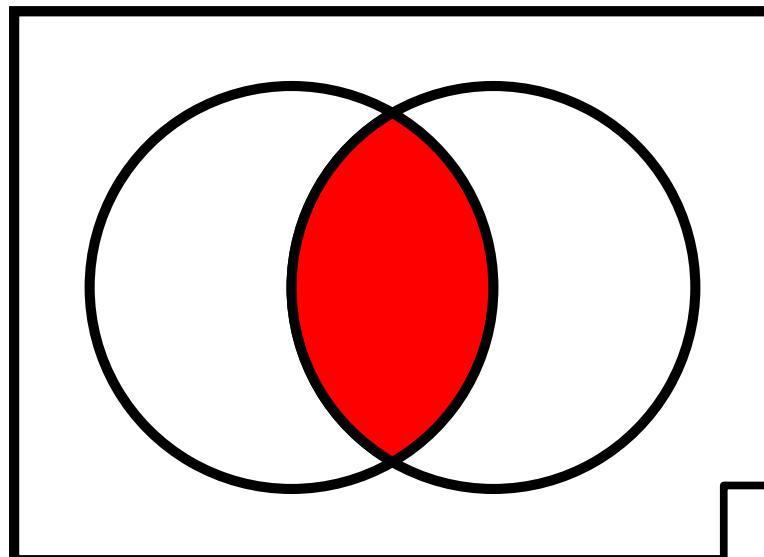
$$L_1 = \{ w \in \{a, b\}^* \mid w \text{ has even length} \}$$

$$L_2 = \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}$$

Construct an NFA for $L_1 \cup L_2$.

Closure Under Intersection

- If L_1 and L_2 are languages over Σ , then $\textcolor{blue}{L_1 \cap L_2}$ is the language of strings in both L_1 and L_2 .
- Intuitively, $L_1 \cap L_2$ is the set of strings meeting the requirements of each language.
- **Theorem:** If L_1 and L_2 are regular, so is $L_1 \cap L_2$.



$$\overline{L}_1 \cup \overline{L}_2$$

Hey, it's De
Morgan's laws!

Concatenation

Numbers

- Numbers can be written in many ways:

2718

2,718

2.718×10^3

MMDCCXVIII

二千七百一十八

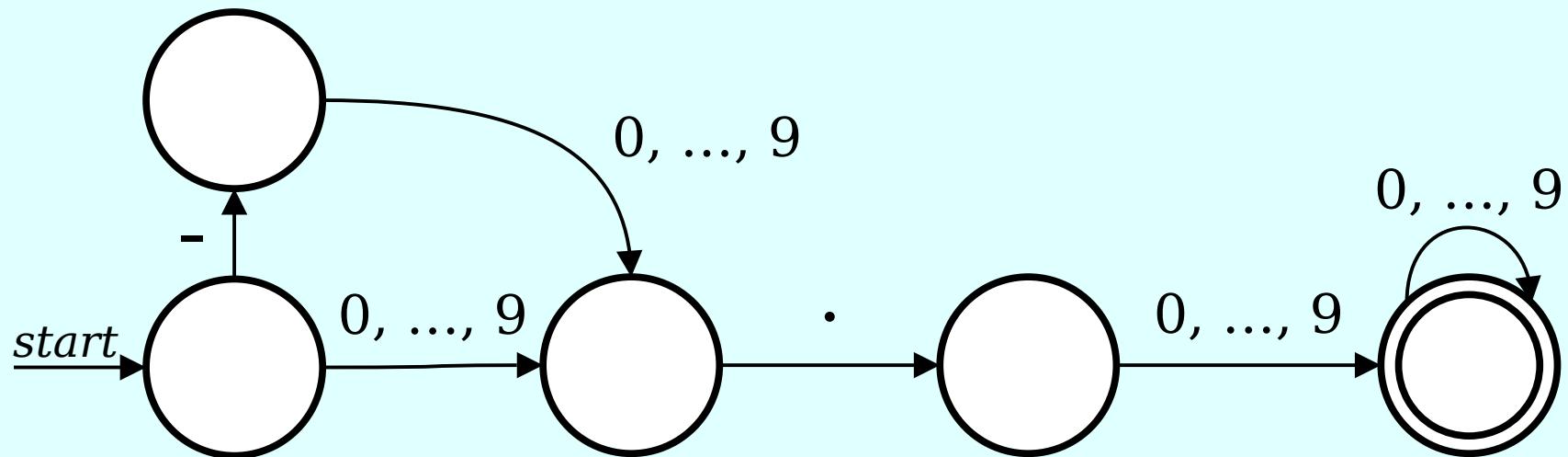
ב'תשי"ח

፲፭፻፭

UQFL

etc.

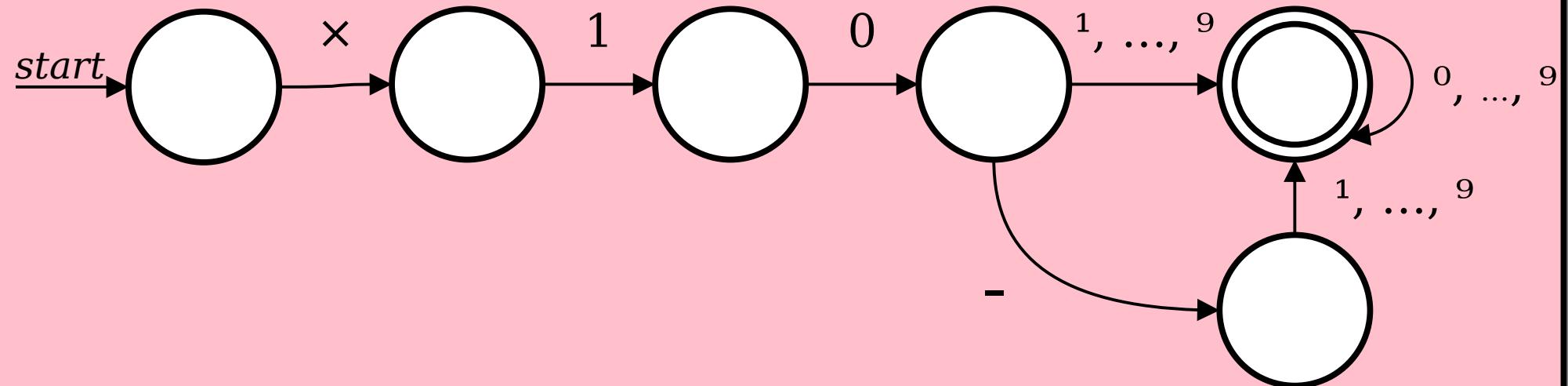
- How would we design a DFA or NFA that checks if a particular string is a number in some numeral system?



2.718×10^3

MMDCCXVIII

二千七百一十八



Question: If you can build finite automata to match the first and second halves of a pattern, can you build a single finite automaton that matches the full pattern?

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the **concatenation** of w and x , denoted wx , is the string formed by tacking all the characters of x onto the end of w .
- Example: if $w = \text{quo}$ and $x = \text{kka}$, the concatenation $wx = \text{quokka}$.
- This is analogous to the $+$ operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ϵ is the **identity element** for concatenation:

$$w\epsilon = \epsilon w = w$$

- Concatenation is **associative**:

$$wx y = w(xy) = (wx)y$$

Concatenation

- The ***concatenation*** of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1 L_2 = \{ x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. x = w_1 w_2 \}$$

- Let $L_1 = \{ \mathbf{ab}, \mathbf{ba} \}$ and $L_2 = \{ \mathbf{aa}, \mathbf{bb} \}$. What is $L_1 L_2$?

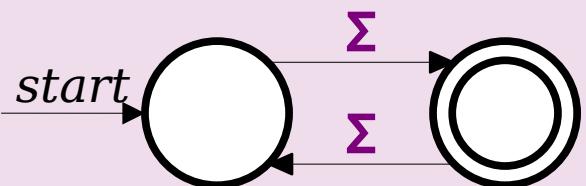
Answer at
<https://cs103.stanford.edu/pollev>

Concatenation Example

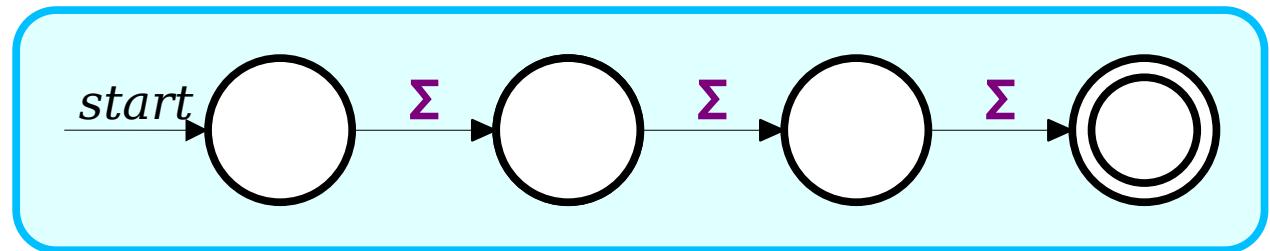
- Let $\Sigma = \{ \mathbf{a}, \mathbf{b}, \dots, \mathbf{z}, \mathbf{A}, \mathbf{B}, \dots, \mathbf{z} \}$ and consider these languages over Σ :
 - ***Noun*** = { \mathbf{Puppy} , $\mathbf{Rainbow}$, \mathbf{Whale} , ... }
 - ***Verb*** = { \mathbf{Hugs} , $\mathbf{Juggles}$, \mathbf{Loves} , ... }
 - ***The*** = { \mathbf{The} }
- The language ***TheNounVerbTheNoun*** is
 - { $\mathbf{ThePuppyHugsTheWhale}$,
 $\mathbf{TheWhaleLovesTheRainbow}$,
 $\mathbf{TheRainbowJugglesTheRainbow}$, ... }

Concatenation

- The **concatenation** of two languages L_1 and L_2 over the alphabet Σ is the language
$$L_1L_2 = \{ x \mid \exists w_1 \in L_1. \exists w_2 \in L_2. x = w_1w_2 \}$$
- Two views of L_1L_2 :
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2 .
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2 .
- **Theorem:** If L_1 and L_2 are regular languages, then so is L_1L_2 .



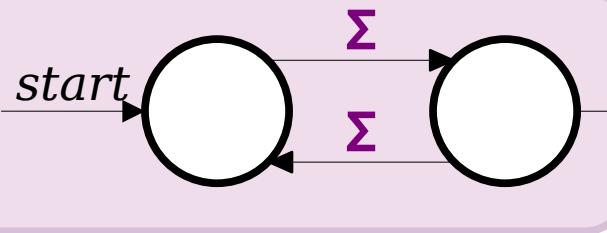
DFA for L_1



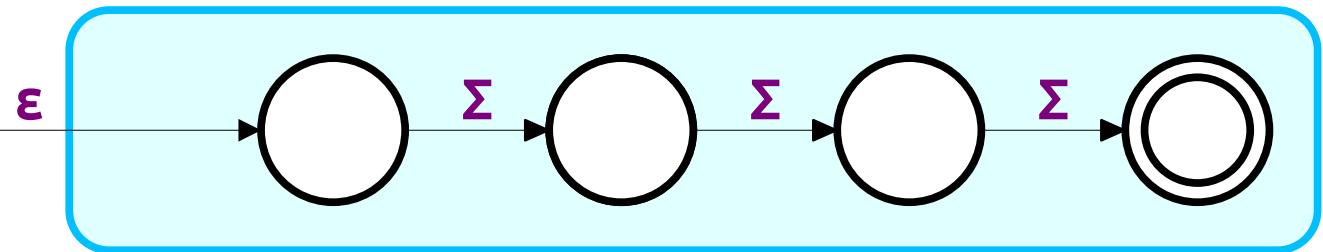
NFA for L_2

$$\begin{aligned}
 L_1 &= \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \\
 L_2 &= \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}
 \end{aligned}$$

Construct an NFA for $L_1 L_2$.



DFA for L_1



NFA for L_2

$$\begin{aligned}
 L_1 &= \{ w \in \{a, b\}^* \mid w \text{ has odd length} \} \\
 L_2 &= \{ w \in \{a, b\}^* \mid w \text{ has length exactly three} \}
 \end{aligned}$$

Construct an NFA for $L_1 L_2$.

Numbers

- Suppose we successfully build a finite automaton that checks if a string is a numbers.
- Now, we want to make a new automaton that checks if a string consists of a *series* of numbers.
 - Perhaps we're parsing a data file, for example.
- Do we have to start from scratch? Or could we reuse what we have?

The Kleene Star

Lots and Lots of Concatenation

- Consider the language $L = \{ \text{aa}, \text{b} \}$
- LL is the set of strings formed by concatenating pairs of strings in L .

$$\{ \text{aaaa}, \text{aab}, \text{baa}, \text{bb} \}$$

- LLL is the set of strings formed by concatenating triples of strings in L .

$$\{ \text{aaaaaa}, \text{aaaab}, \text{aabaa}, \text{aabb}, \text{baaaa}, \text{baab}, \text{bbaa}, \text{bbb} \}$$

- $LLLL$ is the set of strings formed by concatenating quadruples of strings in L .

$$\{ \text{aaaaaaaa}, \text{aaaaaab}, \text{aaaabaa}, \text{aaaabb}, \text{aabaaaa}, \text{aabaab}, \text{aabbaa}, \text{aabb}, \text{baaaaa}, \text{baaaab}, \text{baabaa}, \text{baabb}, \text{bbaaaa}, \text{bbaab}, \text{bbbaa}, \text{bbbb} \}$$

Language Exponentiation

- We can define what it means to “exponentiate” a language as follows:
- $L^0 = \{\varepsilon\}$
 - Intuition: The only string you can form by gluing no strings together is the empty string.
 - Notice that $\{\varepsilon\} \neq \emptyset$. Can you explain why?
- $L^{n+1} = LL^n$
 - Idea: Concatenating $(n+1)$ strings together works by concatenating n strings, then concatenating one more.
- **Question to ponder:** Why define $L^0 = \{\varepsilon\}$?
- **Question to ponder:** What is \emptyset^0 ?

The Kleene Closure

- An important operation on languages is the **Kleene closure**, or **Kleene star**, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. w \in L^n \}$$

- Mathematically:

$$w \in L^* \leftrightarrow \exists n \in \mathbb{N}. w \in L^n$$

- Intuitively, L^* is the language all possible ways of concatenating zero or more strings in L together, possibly with repetition.
- **Question to ponder:** What is \emptyset^* ?

The Kleene Closure

If $L = \{ \text{ a, bb } \}$, then $L^* = \{$

$\varepsilon,$

a, bb,

aa, abb, bba, bbbb,

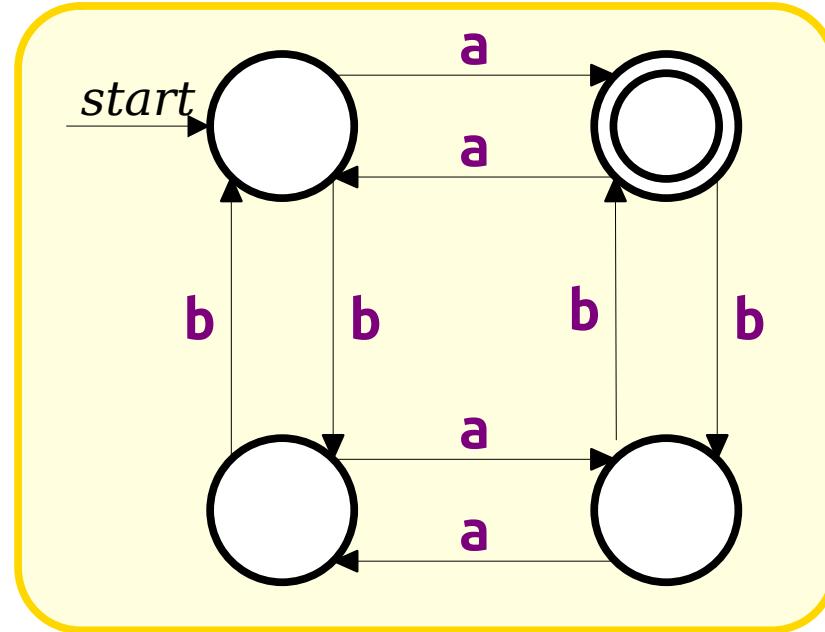
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb,

...

}

Think of L^* as the set of strings you can make if you have a collection of stamps – one for each string in L – and you form every possible string that can be made from those stamps.

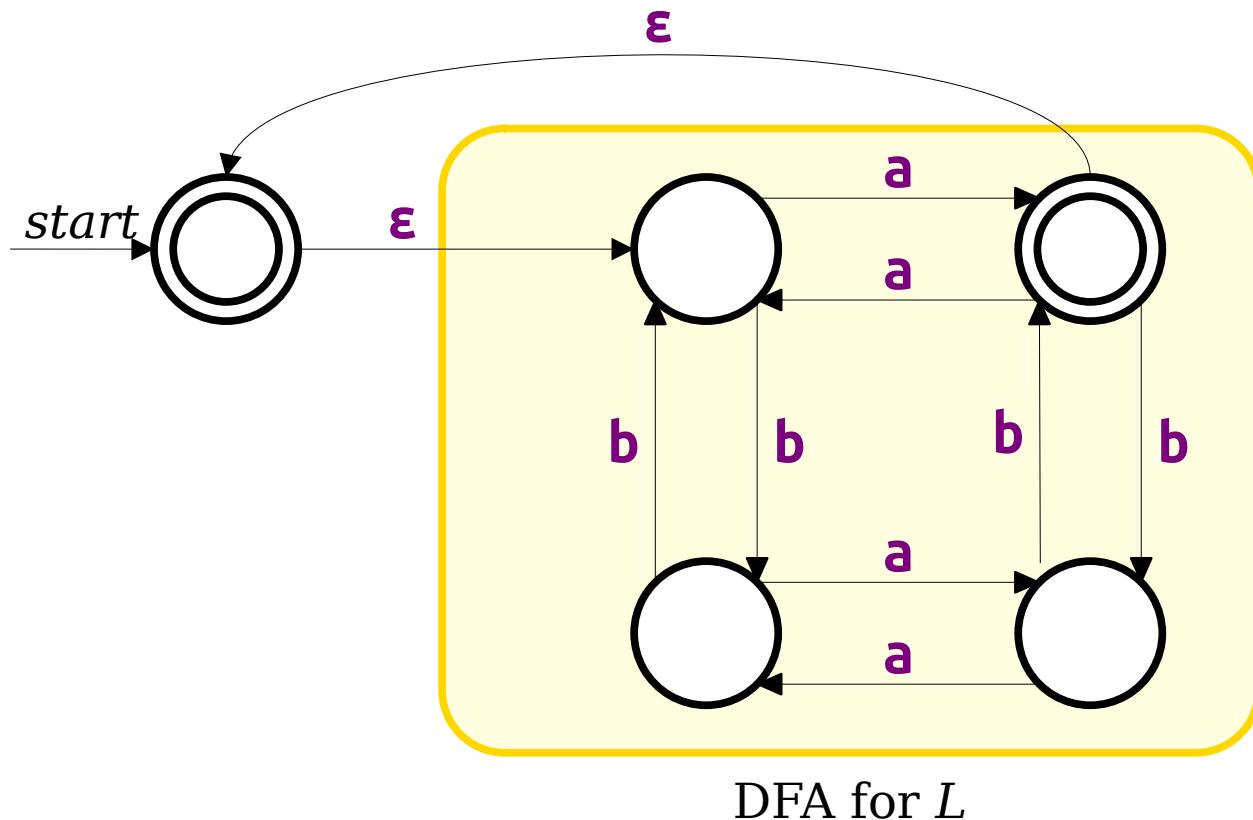
Theorem: If L is a regular language, so is L^* .



DFA for L

$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s } \}$

Construct an NFA for L^* .



DFA for L

$L = \{ w \in \{a, b\}^* \mid w \text{ has an odd number of } a\text{'s and an even number of } b\text{'s} \}$

Construct an NFA for L^* .

Closure Properties

- **Theorem:** If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L_1^*
- These are some of the ***closure properties of the regular languages.***

Next Time

- ***Regular Expressions***
 - Building languages from the ground up!
- ***Thompson's Algorithm***
 - A UNIX Programmer in Theoryland.
- ***Kleene's Theorem***
 - From machines to programs!